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Abstract. Gauge independent form factors ρ(e; e) and κ̂(e; e)(q2) for Møller scattering at s � m2
W are de-

rived. It is pointed out that κ̂(e; e) is very different from its counterparts in other processes. The relation
between the effective parameter κ̂(e; e)(q2, µ) sin2 θ̂W(µ) and sin2 θlept

eff is derived in a scale-independent

manner. A gauge- and process-independent running parameter sin2 θ̂W(q2), based on the pinch-technique
self-energy aγZ(q2), is discussed for all q2 values. At q2 = 0 it absorbs very accurately the Czarnecki–
Marciano calculation of the Møller scattering asymmetry at low s values, and at q2 = m2

Z it is rather close
to sin2 θlept

eff . The q2 dependence of sin2 θ̂W(q2) is displayed in the space- and time-like domains.

1 Introduction

The form factors ρ and κ(q2) that incorporate the effect of
the electroweak corrections in the neutral current ampli-
tudes have played an important role in precision studies of
the standard model (SM) [1]. In particular, their effect has
been discussed in detail in ν–hadron and ν–lepton scat-
tering at momentum transfers |q2| � m2

W [2–4], as well
as in e+ + e− → f + f near the Z0 peak [5]. We recall
that κ(q2) accompanies the electroweak mixing parameter
sin2 θW in the Z0–ff coupling, while ρ multiplies the full
neutral current amplitude. A modified version of κ(m2

Z),
denoted as k̂(m2

Z), has also been important in establishing
the connection between sin2 θlept

eff , employed by the Elec-
troweak Working Group (EWWG) to analyze physics at
the Z0 peak, and the MS parameter sin2 θ̂W(mZ) [6]. The
amplitude κ(q2) and the parameter sin2 θW are frequently
used in two renormalization schemes: the on-shell frame-
work where sin2 θW ≡ 1 − m2

W /m2
Z [7], and the MS ap-

proach, where one employs sin2 θ̂W(µ) and the form factor
is denoted as κ̂. One has, by definition, the relation [3]

κ(q2) sin2 θW = κ̂(q2, µ) sin2 θ̂(µ) , (1)

where µ is the ’t Hooft scale. In the on-shell scheme, κ(q2)
and sin2 θW are µ-independent and can be separately re-
garded as physical observables, while in the MS framework
it is the combination κ̂(q2, µ) sin2 θ̂(µ) that plays that
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function. The traditional construction of ρ and κ̂(q2, µ)
at |q2| � m2

W leads to gauge-invariant expressions, which
are, however, process dependent.

Recently, Czarnecki and Marciano [8–10] emphasized
that κ̂ is particularly important in polarized Møller scat-
tering at low s values (s = (p1 + p2)2 where p1 and p2 are
the four momenta of the initial electrons). In fact, at the
tree level the asymmetries measured in that process are
proportional to 1 − 4 sin2 θ̂W, a very small number. Since
in the presence of electroweak corrections this factor is re-
placed at q2 = 0 by 1 − 4κ̂(e; e)(0,mZ) sin2 θ̂W(mZ), and
κ̂(e; e)(0,mZ) ≈ 1.03, their effect induces a sharp reduc-
tion in the predicted asymmetries. This observation is of
particular interest at present in view of the proposed E158
fixed target experiment at SLAC [11].

In Sect. 2 we discuss the construction of gauge-
independent form factors ρ(e; e) and κ̂(e; e)(q2, µ) relevant
to Møller scattering at s (and therefore q2) � m2

W , and
evaluate them in the framework of the general Rξ gauge.
Their comparison with the traditionally defined ampli-
tudes for other processes, such as ν-lepton scattering at
|q2| � m2

W , is discussed. The relation between the effec-
tive angle defined by κ̂(e; e)(q2, µ) sin2 θ̂W(µ) and sin2 θlept

eff
is analyzed.

In Sect. 3 we discuss a gauge- and process-independent
running parameter sin2 θ̂W(q2), defined on the basis of the
pinch technique (PT) γ–Z self-energy, and show that it
approximates very accurately the electroweak corrections
for Møller scattering at low s values, while it is rather close
to sin2 θlept

eff at q2 = m2
Z . The q2 dependence of sin2 θ̂W(q2)

is then illustrated over a large range of values in the space-
like and time-like domains.
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2 Gauge-independent form factors ρ(e; e)

and κ̂(e; e)(q2, µ)

The traditional approach to obtain the form factors ρ and
κ̂ at |q2| � m2

W in the case of ν–l and ν–hadron scattering
[3, 4] has been to consider the electroweak corrections in
the limit in which external fermion masses and momentum
transfers are neglected relative to mW . The electroweak
corrections can then be written as expressions bilinear in
the matrix elements of JZ

µ and Jγ
µ , the fermionic currents

coupled to Z0 and γ, respectively. Contributions bilinear
in JZ

µ are absorbed in ρ while those proportional to JZ
µ Jµ

γ

define the form factor κ̂(q2). Photonic corrections to the
external legs are treated separately. Writing the fermionic
current of Z0 in the form

JZ
µ = ψ

C3 γµ a−
2

ψ − sin2 θ̂W Jγ
µ , (2)

where a− ≡ (1 − γ5)/2, Jγ
µ is the electromagnetic current

and C3 (±1) is twice the third component of weak isospin,
this procedure leads to the replacement of the tree-level
neutral current amplitude M0

ZZ by

M0
ZZ → im2

Z

q2 −m2
Z

8GF√
2
ρ(i; i′) 〈f |JZ

µ |i〉 〈f ′|Jµ
Z |i′〉 , (3)

JZ
µ → ψ

C3 γµ a−
2

ψ − κ̂(i; i′)(q2, µ) sin2 θ̂W(µ) Jγ
µ , (4)

whereGF = 1.16637(1)×10−5/GeV2 is the Fermi constant
determined from µ decay, and the superscripts (i; i′) refer
to the initial fermions in the process under consideration.
Thus, as mentioned in Sect. 1, ρ and κ̂ are process depen-
dent. In some cases, like ν–l scattering, it is possible to
absorb the complete electroweak corrections in these form
factors. In other cases, such as ν–hadron scattering, this
is not possible since the electroweak corrections induce
hadronic currents with an isospin structure not present at
the tree level. The latter are then treated as contributions
additional to those contained in (3) and (4).

The approach described above has two important
virtues:
(i) the dominant electroweak corrections are incorporated
as compact and rather simple modifications of the tree-
level neutral current amplitude, and
(ii) the form factors ρ(i; i′) and κ̂(i; i′)(q2, µ) are gauge in-
dependent.

In order to implement this construction in the case
of Møller scattering, we consider the diagrams of Fig. 1,
which contain all the gauge-dependent contributions to
the κ̂ form factor associated with the 〈f ′|JZ

µ |i′〉 matrix
element. The mirror image of those diagrams contributes
to the κ̂ factor present in the 〈f |JZ

µ |i〉 amplitude.
Using the results of [12], the diagrams of Fig. 1 can

be calculated in the general Rξ gauge. The gauge depen-
dencies of the graphs indeed cancel and, performing the
MS subtraction, we find that their contribution to κ̂ in
the case of the Møller scattering at s (and therefore |q2|)
� m2

W is given by

Fig. 1. Feynman diagrams that give gauge-dependent contri-
butions to the κ̂ form factor in 〈f ′|JZ

µ |i′〉. The circle in Fig. 1a
represents the contribution of AZγ , including its fermionic and
bosonic components. The solid line circles in Figs. 1b,e indi-
cate a sum of diagrams in which the ends of the W propagator
are attached in all possible ways to the fermion lines. In par-
ticular, they include the W contribution to the wave function
renormalization of the external lines. The diagram in Fig. 1f
represents the W–W box diagrams, whether crossed or un-
crossed

κ̂(e; e)(q2, µ) = 1

+
α

2πŝ2
ln

(
mZ

µ

) [
−1

3

∑
i

(CiQi − 4 ŝ2Q2
i ) + 7 ĉ2 +

1
6

]

+
α

2πŝ2

[
−

∑
i

(CiQi − 4 ŝ2Q2
i ) Ii(q

2)

+
(

7
2
ĉ2 +

1
12

)
ln c2 − 23

18
+
ŝ2

3

]
, (5)

where

Ii(q2) =
∫ 1

0
dxx (1 − x) ln

m2
i − q2 x (1 − x)

m2
Z

, (6)

the i summation is over the fundamental fermions and
includes a color factor 3 for quarks, Ci (±1) is twice the
third component of weak isospin for fermion i, Qi is its
electric charge in units of the proton charge e, mi its mass,
c2 ≡ m2

W /m2
Z , and ŝ2 ≡ 1 − ĉ2 is an abbreviation for the

MS parameter sin2 θ̂W(mZ).
The corresponding gauge-independent form factor

ρ(e; e) contains contributions from several diagrams dis-
cussed in [2], and in the Møller scattering case becomes
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Fig. 2. Gauge-independent vertex diagram. The meaning of
the solid line circle is the same as in Fig. 1

ρ(e; e) = 1

+
α̂(mZ)
4πŝ2

{
3
4

ln c2

ŝ2
− 3

4
+

3
4
m2

t (1 + δQCD)
m2

W

+
3
4
ξ

(
ln (c2/ξ)
c2 − ξ

+
1
c2

ln ξ
1 − ξ

)}
, (7)

where ξ ≡ m2
H/m

2
Z , α̂−1(mZ) = 127.9 ± 0.1, and δQCD ≈

−0.12 is a QCD correction [13].
Aside from the electroweak corrections in (5) and (7),

there are several additional contributions involving Z–Z
and γ–Z boxes, the vertex diagram of Fig. 2 and QED
corrections. These additional contributions are gauge in-
dependent and have been evaluated separately in [8].

At q2 = 0, (5) becomes

κ̂(e; e)(0, µ) = 1

+
α

2πŝ2
ln

(
mZ

µ

) [
−1

3

∑
i

(CiQi − 4 ŝ2Q2
i ) + 7 ĉ2 +

1
6

]

+
α

2πŝ2

[
1
3

∑
i

(CiQi − 4 ŝ2Q2
i ) ln

(
mZ

mi

)

+
(

7
2
ĉ2 +

1
12

)
ln c2 − 23

18
+
ŝ2

3

]
. (8)

In order to evaluate κ̂(e; e)(0, µ) sin2 θ̂W(µ) it is conve-
nient to set µ = mZ . The parameter sin2 θ̂(mZ) can
be obtained from sin2 θlept

eff by using the analysis of [6].
Since in Sect. 3 we will consider a running parameter at
large q2 values, for the purpose of this paper we choose
not to decouple the top quark in the explicit summa-
tions in (5) and (8), or in the definition of sin2 θ̂(mZ).
In that case, for mt = 174.3 GeV, we have sin2 θ̂(mZ) =
sin2 θlept

eff /1.00044. For sin2 θlept
eff we will use the central

value of the current world average, 0.23148 [14], which
leads to sin2 θ̂(mZ) = 0.23138. In the appendix we re-
port the results obtained if, instead, one employs as in-
put the central value derived from the leptonic asymme-
tries, namely sin2 θ̂(mZ)(l) = 0.23103. For the contribu-
tion of the first five flavors of quarks to the i summation
in (8) one must invoke dispersion relations and experi-
mental data on e+ e− → hadrons: we use a recent update
by Marciano [15]. Further employing mW = 80.426 GeV,
mZ = 91.1875 GeV, mt = 174.3 GeV [14], mH = 200 GeV,
we obtain

κ̂(e; e)(0,mZ) = 1.0270 ± 0.0025 , (9)

ρ(e; e) = 1.0034 . (10)

In the region 115 GeV ≤ mH ≤ 200 GeV, ρ(e; e) varies
slowly with mH . For instance, ρ(e; e) = 1.0037 at mH =
115 GeV.

Most of the difference between (7)–(10) and the results
reported in [8] is due to the fact that we have retained
the contributions of the W–W boxes in κ̂(e; e)(0,mZ) and
ρ(e; e) in order to ensure their gauge independence. In
contrast, in [8] these contributions have been separated
from the form factors in a particular gauge, namely the
’t Hooft–Feynman gauge. In this gauge, the W–W boxes
contribute α/4πŝ2 to ρ(e; e) and −α/4πŝ2 to κ̂(e; e). How-
ever, in the general Rξ gauges, they may be arbitrarily dif-
ferent. A second, smaller difference, is that, as explained
before, we have included the top quark contribution in (8).
We have already pointed out that the Z–Z boxes are gauge
independent and therefore they may be separated without
affecting the gauge properties of κ̂(e; e) and ρ(e; e). They are
suppressed by a factor 1−4ŝ2 and our calculation of these
terms agrees with that reported in [8]. The contribution
of the Z–γ boxes, the diagram of Fig. 2, and QED correc-
tions are also proportional to 1 − 4ŝ2 and are contained
in a function F1(y,Q2) (y = Q2/s; Q2 = −q2) evaluated
in [8]. As an interesting illustration, it is pointed out in
that paper that F1(1/2, 0.02 GeV2) = −0.0041 ± 0.0010.

Putting together the values of the form factors eval-
uated in the present paper (see (9) and (10)), the Z–Z
box diagrams and the calculation of F1(y,Q2) reported
in [8], one finds that the overall effect of the electroweak
corrections is to replace

1 − 4 sin2 θ̂W(mZ) →
ρ(e; e)

{
1 − 4 κ̂(e; e) (0,mZ) sin2 θ̂W(mZ)

+ (Z − Z)box + F1(y,Q2)
}
, (11)

which at Q2 = 0.025 GeV2 and y = 1/2 equals 0.0454 ±
0.0023 ± 0.0010. This is numerically very close to the re-
sult obtained by Czarnecki and Marciano because these
authors chose to separate the contributions of the W–
W boxes in the ’t Hooft–Feynman gauge, where they
are reasonably small (cf. Sect. 4). As emphasized in [8],
since 1 − 4 sin2 θ̂W(mZ) = 0.07448 ± 0.00068, the effect
of the electroweak corrections in this case is to reduce
the asymmetries by ≈ 39%! Clearly, the bulk of the re-
duction is contained in 1−4 κ̂(e; e) (0,mZ) sin2 θ̂W(mZ) =
0.0495 . Detailed studies of radiative corrections to polar-
ized Møller scattering at low and high energies are given
in [16,17], respectively.

It should be pointed out that the correction
κ̂(e; e)(0,mZ) − 1 = 0.0270 is very different from the cor-
responding effects in other processes. For instance, in νµ–
e and νe–e scattering one obtains κ̂(νµ; e)(0,mZ) − 1 =
−0.0032 and κ̂(νe; e)(0,mZ)−1 = −0.0210, respectively [4].
The large difference is mainly due to sizable “charge ra-
dius” diagrams that contribute negatively and to signifi-
cant and negative W–W and Z–Z box contributions. In
contrast, the vertex diagram of Fig. 2 as well as the Z–Z
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boxes are suppressed by 1 − 4ŝ2 in the Møller scattering
case, while the large corrections associated with the γ–Z
self-energy are not.

Using the gauge-independent form factor κ̂(e; e)(q2, µ),
it is possible to define an effective electroweak parameter
for |q2| � m2

W :

sin2 θ
(e; e)
eff (q2) ≡ Re κ̂(e; e)(q2, µ) sin2 θ̂W(µ) . (12)

For q2 < 0, κ̂(e; e)(q2, µ) is real and the Re instruction is
not necessary. Dividing (12) by

sin2 θlept
eff = Re k̂(m2

Z , µ) sin2 θ̂W(µ) , (13)

where k̂(m2
Z , µ) is the form factor discussed in [6], and

neglecting two-loop effects not enhanced by powers of m2
t ,

we find

sin2 θ
(e; e)
eff (q2) (14)

=
{

1 + Re
[
κ̂(e; e)(q2, µ) − k̂(m2

Z , µ)
] }

sin2 θlept
eff .

The µ dependence cancels in (14) so that we may choose
µ = mZ , and (14) becomes

sin2 θ
(e; e)
eff (q2) =

[
Re κ̂(e; e)(q2,mZ) − 0.00044

]
sin2 θlept

eff .

(15)
Equation (15) establishes a scale-independent relation-
ship between the two gauge-independent parameters
sin2 θ

(e; e)
eff (q2) and sin2 θlept

eff , which may be regarded as
physical observables.

It is worthwhile to point out that the form factors
κ̂(q2, µ) and k̂(m2

Z , µ) are quite different conceptually even
when κ̂ is evaluated at q2 = m2

Z . While κ̂ is relevant to
four-fermion scattering processes, k̂(m2

Z ,mZ) involves the
decay amplitude of an on-shell Z0 into an l–l pair.

3 The running of sin2 θ̂W

In this section we discuss the possibility of constructing a
running electroweak mixing parameter for arbitrary values
of q2. We will impose four theoretical requirements:
(i) it should be process independent;
(ii) since sin2 θ̂W is related to γ–Z mixing, it should involve
the AγZ(q2) self-energy in a fundamental way;
(iii) it should be gauge independent, at least in the class
of Rξ gauges;
(iv) it should be as simple as possible.

At first sight, these requirements seem difficult to sat-
isfy. In fact, we have seen in Sect. 2 that, in order to obtain
gauge-independent form factors, the contributions of box
diagrams must be included. Since in general box diagrams
depend on two kinematic variables, s and q2, and are pro-
cess dependent, it is not trivial to see how to achieve our
aims. However, there is a well-known framework that al-
lows us to satisfy these conditions, namely the pinch tech-
nique (PT) [18–27]. We recall that the PT is a prescription

that judiciously combines the conventional self-energies
with “pinch parts” from vertex and box diagrams in such
a manner that the new self-energies are gauge independent
and possess desirable theoretical properties. In [22], it was
shown that the “pinch parts” can be identified with am-
plitudes involving appropriate equal-time commutators of
currents, which explains why they are process independent
and unaffected by strong interaction dynamics.

In this section we discuss a running electroweak mixing
parameter sin2 θ̂W(q2) defined in terms of the PT γZ self-
energy. Specifically,

sin2 θ̂W(q2) ≡
(

1 − ĉ

ŝ

aγZ(q2, µ)
q2

)
sin2 θ̂W(µ) , (16)

where aγZ(q2, µ), the PT γZ self-energy of the SM, can
be conveniently expressed as [22]

aγZ(q2, µ) (17)

= AγZ(q2, µ)|ξW =1 − 2e2

ĉŝ

(
2 q2 ĉ2 −m2

W

)
IWW (q2, µ) .

In (17) AγZ(q2, µ)|ξW =1 is the conventional γ–Z self-
energy evaluated in the ’t Hooft–Feynman gauge ξW = 1,
and

IWW (q2, µ) =
1

16π2

∫ 1

0
dx ln

[
m2

W − q2 x (1 − x) − i ε
µ2

]
.

(18)
Very simple analytic formulae for IWW (q2, µ) are given
in (A5)–(A7) of [22]. In (18) we have performed the MS
subtraction of δ = (n − 4)−1 + (γ − ln 4π)/2. It is under-
stood that the same subtraction has been implemented in
AγZ(q2, µ)|ξW =1.

Since the RHS of (16) is process and gauge inde-
pendent, it satisfies our theoretical requirements. It is
also important to remember that, unlike AγZ(0, µ)|ξW =1,
aγZ(0, µ) = 0, so that (16) is regular as q2 → 0.

It is convenient to define

κ̂PT(q2, µ) = 1 − ĉ

ŝ

aγZ(q2, µ)
q2

. (19)

In the range |q2| � m2
W , we find

κ̂PT(q2, µ) = 1

+
α

2πŝ2
ln

(
mZ

µ

) [
−1

3

∑
i

(CiQi − 4 ŝ2Q2
i ) + 7 ĉ2 +

1
6

]

+
α

2πŝ2

[
−

∑
i

(CiQi − 4 ŝ2Q2
i ) Ii(q

2)

+
(

7
2
ĉ2 +

1
12

)
ln c2 − ĉ2

3

]
. (20)

Comparing (20) with (5), we have, for |q2| � m2
W :

κ̂PT(q2, µ) = κ̂(e; e)(q2, µ) +
17
18

α

2πŝ2
. (21)
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Fig. 3. sin2 θ̂W(q2) as a function of Q = (−q2)1/2 in the space-
like domain q2 < 0, for 0 ≤ Q ≤ 10 GeV

Thus, while κ̂(e; e)(0,mZ) = 1.0270 ± 0.0025 (cf. (9)),

κ̂PT(0,mZ) = 1.0317 ± 0.0025 , (22)

a difference of 4.7 × 10−3. We see that the PT form
factor approximates rather well κ̂(e; e)(0,mZ) at q2 = 0.
More interestingly, the PT running parameter evaluated
at q2 = 0 almost exactly absorbs the complete calculation
reported in (11) for y = 1/2 and Q2 = 0.025 GeV2. In
fact, using (16), (19) and (22), we have

sin2 θ̂W(0) = 0.2387 ± 0.0006 . (23)

This leads to

1 − 4 sin2 θ̂W(0) = 0.0452 ± 0.0023 , (24)

in very close agreement with 0.0454 ± 0.0023 ± 0.0010,
reported after (11), when all electroweak corrections are
taken into account. Of course, this very accurate agree-
ment will generally not hold for other values of y and Q2,
but it is interesting that 1−4 sin2 θ̂W(0) does absorb quite
precisely the bulk of the corrections to Møller scattering
at s � m2

W .
In order to evaluate sin2 θ̂W(q2) as a function of q2, we

set µ = mZ and employ the expressions for A(f)
γZ (q2,mZ)

from [2], A(b)
γZ(q2,mZ)|ξW =1 from [28] (f and b mean

fermionic and bosonic contributions), and IWW (q2,mZ)
from [22]. As for α, we follow the approach of [29] and
replace α−1 → α−1(q2),

α−1(q2) = α−1 (25)

− 2
π

∑
i

Q2
i

∫ 1

0
dxx (1 − x) ln

{
m2

i − q2 x (1 − x)
m2

i

}
.

In evaluating A
(f)
γZ (q2,mZ) and α−1(q2), we employ the

effective light quark masses and the QCD correction factor
discussed in [15].

Figures 3 and 4 show sin2 θ̂W(q2) in the space-like do-
main q2 < 0, appropriate for e−–e− colliders, as a function
of Q = (−q2)1/2. Table 1 gives a few representative values
of κ̂(q2,mZ) and sin2 θ̂W(q2) in that region.

Fig. 4. Same as in Fig. 3, for 10 GeV ≤ Q ≤ 1 TeV

Table 1. κ̂PT(q2, mZ) and sin2 θ̂W(q2) for q2 < 0 at different
values of Q (Q =

√−q2)

Q [GeV] κ̂PT(q2, mZ) sin2 θ̂W(q2)

0 1.0317 0.2387
mZ 1.0028 0.2320
111 1.0026 0.2320
500 1.0163 0.2352
1000 1.0296 0.2382

We see that sin2 θ̂W(q2) equals 0.2387 at Q = 0,
0.2320 at Q = mZ , reaches a minimum of 0.23199 at
Q = 111 GeV, and then increases monotonically to 0.2352
at Q = 500 GeV and 0.2382 at Q = 1 TeV.

Figure 4 bears a close resemblance to a curve presented
in [9,10] for a running parameter constructed on the basis
of the diagrams in Figs. 1a,d. The theoretical foundation
of the two running parameters is, however, very different.
While the PT self-energy is gauge independent within the
class of Rξ gauges, the sum of the diagrams in Figs. 1a,d is
not. Thus, in principle, by varying the gauge in the second
approach one can alter the values and Q2 dependence of
the running parameter.

A second problem, already discussed in [22], is that the
diagram in Fig. 1d is not truly process independent, even
in the limit of neglecting the external fermion masses. For
instance, when the external fermion is a quark or a hadron,
there are QCD corrections not present in the leptonic case.
As explained in [22], this problem is neatly bypassed in the
PT approach since the pinch part of Fig. 1d is unaffected
by strong interaction dynamics.

In the time-like domain q2 > 0, κ̂PT(q2, µ) is complex
and we define the running parameter as

sin2 θ̂W(q2) ≡ Re
[
κ̂PT(q2,mZ)

]
sin2 θ̂W(mZ) . (26)

In Figs. 5 and 6 we present values of sin2 θ̂W(q2) in the
time-like domain q2 > 0, appropriate to e+–e− colliders,
as a function of Q = (q2)1/2. A sharp decrease associated
with the W–W threshold is very visible. In order to soften
the behavior in that region we have included the W width
by means of the replacement m2

W → m2
2 W − im2 W Γ2 W ,
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Fig. 5. sin2 θ̂W(q2) as a function of Q = (q2)1/2 in the time-like
domain q2 > 0, for 50 ≤ Q ≤ 300 GeV

Fig. 6. Same as in Fig. 5, for 10 GeV ≤ Q ≤ 1 TeV

Table 2. κ̂PT(q2, mZ) and sin2 θ̂W(q2) for q2 > 0 at different
values of Q (Q =

√
q2)

Q [GeV] κ̂PT(q2, mZ) sin2 θ̂W(q2)

mZ 0.9961 0.2305
164 0.9685 0.2241
500 1.0107 0.2338
1000 1.0277 0.2378

with m2 W = mW /(1+ (ΓW /mW )2)1/2 = 80.398 GeV and
Γ2 W = m2 WΓW /mW = 2.117 GeV [30].

At Q = mZ , we find sin2 θ̂W(m2
Z) = 0.23048, which

is lower than sin2 θlept
eff = 0.23148 by 0.43%. Although

not in perfect consonance, the two parameters are rather
close. Other representative values of κ̂PT and sin2 θ̂W(q2)
in the time-like region are given in Table 2. We see that
sin2 θ̂W(q2) ranges from 0.2387 at Q = 0 to 0.2305 at Q =
mZ , reaches a minimum of 0.2241 at Q = 164 GeV, and
then increases monotonically to 0.2338 at Q = 500 GeV
and 0.2378 at Q = 1 TeV.

It is interesting to note that sin2 θ̂W(−m2
Z) is slightly

larger than sin2 θlept
eff , the difference being 0.22%. Thus,

sin2 θlept
eff lies between sin2 θ̂W(m2

Z) and sin2 θ̂W(−m2
Z).

4 Discussion

Aside from the general observation that physical results
in gauge theories should be parametrized in a gauge-
independent manner, there are specific reasons why this is
particularly important in the case of the electroweak form
factors ρ and κ̂.
(i) If κ̂(e; e)(q2, µ) is gauge independent, the effective
electroweak mixing parameter sin2 θ

(e; e)
eff (q2) defined in

(12) is also gauge independent, and consequently may
be regarded as a physical observable. In particular,
sin2 θ

(e; e)
eff (0) can be measured by polarized Møller scatter-

ing with considerable precision. If κ̂(e; e)(q2, µ) is defined
in a gauge-dependent manner, this is theoretically un-
founded, since sin2 θ

(e; e)
eff (q2) would not qualify as a phys-

ical observable.
(ii) The parameterization in terms of ρ and κ̂ involves a
factorization of one-loop electroweak corrections (see, for
example, (3), (4) and (11)). If the form factors are defined
in a gauge-dependent manner, one can make the two-loop
effects induced by the factorization to vary arbitrarily by
simply changing the gauge used to calculate the form fac-
tors. These effects can be very large for large values of the
gauge parameter and, in fact, the calculation diverges in
the unitary, i.e. the physical, gauge!
(iii) It should be also pointed out that the electroweak
form factors for other processes, such as discussed in [2–4],
have been defined in a gauge-independent manner.

In order to circumvent these theoretical problems,
in Sect. 2 we have discussed the derivation of gauge-
independent form factors ρ(e; e) and κ̂(e; e)(q2, µ) appro-
priate to Møller scattering at s � m2

Z . For the rea-
sons explained after (11), the overall electroweak correc-
tions including these form factors, as well as the gauge-
independent corrections that have been separated out,
agree numerically very closely with the results of [8]. We
have pointed out that κ̂(e; e)(q2, µ) − 1 is quite different
from the corresponding form factors in other processes
such as νµ–e or νe–e scattering. Thus, it is not possible,
even at |q2| � m2

W , to find a universal electroweak mix-
ing parameter that absorbs the bulk of the electroweak
corrections in all processes.

However, as emphasized in [8–10], experiments on po-
larized Møller scattering are very special in that the asym-
metries measured in that process are greatly affected by
κ̂(e; e)(q2,mZ) and may be used to measure the effective
mixing parameter sin2 θ

(e; e)
eff (q2). At s � m2

W this is of
considerable present interest in view of the proposed E158
experiment at SLAC [11].

In Sect. 2 we have also derived a scale-independent re-
lation between sin2 θ

(e; e)
eff (q2) and sin2 θlept

eff . In particular,
this relation may be employed to discuss the electroweak
corrections to Møller scattering in the effective scheme of
renormalization, in which residual scale dependencies can-
cel in finite orders of perturbation theory, and sin2 θlept

eff
plays the role of the basic electroweak parameter [31–34].

In Sect. 3 we have discussed a gauge- and process-
independent running parameter based on the PT γZ self-
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energy [22]. At q2 = 0 it absorbs very precisely the elec-
troweak corrections to Møller scattering evaluated in [8]
at y = 1/2 and Q2 = 0.025 GeV2, and at q2 = m2

Z it lies
within 0.43% of sin2 θlept

eff . Thus it provides an attractive
theoretical and phenomenological framework to describe
the running of the electroweak mixing parameter over a
large range of q2 values.
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Appendix

In this appendix we report the numerical results obtained
if one employs as input the central value of sin2 θlept

eff de-
rived from the leptonic asymmetries, namely sin2 θlept

eff =
0.23113, rather than the world average.

Without decoupling the top quark contributions, we
have sin2 θ̂W(mZ) = 0.23103. The value in (9) is replaced
by 1.0271 ± 0.0025, while (11) equals 0.0467 ± 0.0023 ±
0.0010. 1 − 4 κ̂(e; e)(0,mZ) sin2 θ̂W(mZ) becomes 0.0508,
to be compared with 1 − 4 sin2 θ̂W(mZ) = 0.0759. Equa-
tions (22), (23) and (24) equal 1.0319 ± 0.0025, 0.2384 ±
0.0006, and 0.0464 ± 0.0023, respectively. The values of
sin2 θ̂W(q2) are smaller by 0.0003 or 0.0004 than those in
Table 1 and by 0.0004 than those in Table 2.
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